EECS 562

Homework 13

- **1.** A BPSK system needs to transmit 20 Mbit/sec and provide a 10^{-5} BER. Let N_0 =-100 dBW/Hz. The path loss is 50dB.
 - a. Find the minimum required RF transmission bandwidth, BRF.
 - b. Find the required transmitter power in dB_W.
- **2.** A 8-PSK system needs to transmit 20 Mbit/sec and provide a 10^{-5} BER. Let N_0 =-100 dBW/Hz. The path loss is 50dB.
 - a. Find the required RF transmission bandwidth in MHz, BRF.
 - b. Find the required transmitter power in dB_w.
- **3.** A BPSK system needs to provide the customer with a 1 Mb/s transmission rate with a performance specification of BER= 10^{-5} . $S_n(f) = N_0/2$ with $N_0 = 2.16 \times 10^{-17}$ W/Hz. The path loss between the transmitter and receiver is 105 dB.
 - a. The noise $S_n(f)$ is input to an ILPF with a bandwidth of 2 MHz. What is the noise power at the filter output in dB_W ?
 - b. How much RF bandwidth (in MHz) is needed if raised cosine pulses are used with α = 1.
 - c. Find the required transmit power in dBW.
 - d. What is the benefit of switching the system to 16-QAM?
 - e. If the system uses 16-QAM with the BER fixed at 10^{-5} the transmit power needs to be increased or decreased compared to the power found in part c.
- **4.** A radio link has the following parameters:

Carrier frequency, f_c 1 GHz Transmit power 1 W Transmitter Antenna Gain 0 dB Path loss 151.1 dB Antenna temperature 290 K Receiver antenna gain 20 dB Receiver noise figure 6 dB Information bit rate 1 Mb/s

- BPSK modulation
- a. For BPSK the received signal is $A\cos(2\pi f_c t)$ or $A\cos(2\pi f_c t + \pi)$, find A.
- b. Find the energy/bit = E_b .
- c. What is the Bit Error Rate?
- **5.** For a fixed E_b/N_0 =5dB, the BER for
 - a. OPSK
 - b. 8-PSK
 - c. 16-QAM
 - d. 64-QAM
 - e. 256-QAM
 - f. Why does the BER increase as the modulation changes from part a. to

part e.

6. Given a 8-PSK system operating at f_c =2.4Ghz over a d=33.3 km distance in an environment resulting in a path loss of 130.5dB.

The receiver has a 6 dB noise figure and an antenna temperature of 100°.

The transmit and receive antennas are isotropic.

The customer requires a bit rate of 2.7 Mb/s with a BER of 10^{-6} .

- a. What is the required $\frac{E_b}{N_0}$?
- b. What is N_0 in dB?
- c. What is E_b in dB?
- d. What is E_s in dB?
- e. What is the symbol rate r_s ?
- f. Find the receiver sensitivity in dB_W , that is, the received power, P_R , to achieve a BER=10⁻⁶.
- g. What is the path loss?
- h. What are the antenna gains?
- i. Find the required transmiter power in Watts and dB_W.
- j. With all the link parameters given above the receiver moves away from the transmitter. Find the distance (in km) such that the system has to switch to QPSK to maintain a BER=10⁻⁶; switching to QPSK reduced its transmission rate to 1.8 Mb/s.